skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Angelopoulos, Vassilis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra‐low‐frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground‐based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF‐modulated whistler‐mode waves. We observed peak‐to‐peak dTEC amplitudes reaching 0.5 TECU (1 TECU is equal to electrons/) with modulations spanning scales of 5–100 km. The cross‐correlation between our modeled and observed dTEC reached 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler‐mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high‐latitude dTEC generation from magnetospheric wave‐induced precipitation, addressing a significant gap in current physics‐based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere‐ionosphere coupling via ULF waves. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Although the effects of electromagnetic ion cyclotron (EMIC) waves on the dynamics of the Earth's outer radiation belt have been a topic of intense research for more than 20 years, their influence on rapid dropouts of electron flux has not yet been fully assessed. Here, we make use of contemporaneous measurements on the same ‐shell of trapped electron fluxes at 20,000 km altitude by Global Positioning System (GPS) spacecraft and of trapped and precipitating electron fluxes at 450 km altitude by Electron Losses and Fields Investigation (ELFIN) CubeSats in 2020–2022, to investigate the impact of EMIC wave‐driven electron precipitation on the dynamics of the outer radiation belt below the last closed drift shell of trapped electrons. During six of the seven selected events, the strong 1–2 MeV electron precipitation measured at ELFIN, likely driven by EMIC waves, occurs within 1–2 hr from a dropout of relativistic electron flux at GPS spacecraft. Using quasi‐linear diffusion theory, EMIC wave‐driven pitch angle diffusion rates are inferred from ELFIN measurements, allowing us to quantitatively estimate the corresponding flux drop based on typical spatial and temporal extents of EMIC waves. We find that EMIC wave‐driven electron precipitation alone can account for the observed dropout magnitude at 1.5–3 MeV during all events and that, when dropouts extend down to 0.5 MeV, a fraction of electron loss may sometimes be due to EMIC waves. This suggests that EMIC wave‐driven electron precipitation could modulate dropout magnitude above 1 MeV in the heart of the outer radiation belt. 
    more » « less
  3. Abstract The rapidly expanding fleet of low‐altitude CubeSats equipped with energetic particle detectors brings new opportunities for monitoring the dynamics of the radiation belt and near‐Earth plasma sheet. Despite their small sizes, CubeSats can carry state‐of‐the‐art instruments that provide electron flux measurements with finer energy resolution and broader energy coverage, compared to conventional missions such as POES satellites. The recently launched CIRBE CubeSat measures 250–6,000 keV electrons with extremely high energy resolution, however, CIRBE typically only measures locally‐trapped electrons and cannot directly measure the precipitating electrons. This work aims to develop a technique for identifying indications of nightside precipitation using the locally‐trapped electron measurements by the CIRBE CubeSat. This study focuses on two main types of drivers for nightside precipitation: electron scattering by the curvature of magnetic field lines in the magnetotail current sheet and electron scattering by resonance with electromagnetic ion cyclotron (EMIC) waves. Using energy and pitch‐angle resolved electron fluxes from the low‐altitude ELFIN CubeSat, we reveal the features that distinguish between these two precipitation mechanisms based solely on locally‐trapped flux measurements. Then we present measurements from four CIRBE orbits and demonstrate the applicability of the proposed technique to the investigation of nightside precipitation using CIRBE observations, enabling separation between precipitation induced by curvature scattering and EMIC waves in nearby regions. Our study underscores the feasibility of employing high‐energy‐resolution CIRBE measurements for detecting nightside precipitation of relativistic electrons. Additionally, we briefly discuss outstanding scientific questions about these precipitation patterns that could be addressed with CIRBE measurements. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Night-side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲ 100𝑘𝑒𝑉 electrons. However, recent low-altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night-side. This study presents a night-side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event-based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night-side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night-side relativistic electron precipitation. 
    more » « less
  5. Abstract In the ion foreshock, there are many foreshock transients driven by back streaming foreshock ions. When the foreshock ions interact with tangential discontinuities (TDs), hot flow anomalies form if the foreshock ion‐driven current decreases field strength at TDs, but the opposite situation has been paid little attention. Using 2.5‐D local hybrid simulations, we show that a compressional boundary with enhanced field strength and density can form. We examine how the foreshock ions interact with TDs under various magnetic field geometries to drive currents that lead to compressional boundaries. The current driven by the foreshock ions should peak on its initial side of a TD so that the enhanced field strength at the TD in turn increases this current by keeping more foreshock ions on their initial side. Which side the current peaks can be determined by whether the foreshock ions initially cross the TD and/or how their velocity is projected into the local perpendicular direction. Additionally, the foreshock ion‐driven currents from two sides could compete, and whether a compressional boundary forms is determined by the net current profile. Because such compressive structures in the foreshock can drive magneto sheath jets and cause many geoeffects, it is necessary to fully understand their formation. 
    more » « less
  6. Abstract Hot flow anomalies are ion kinetic phenomena that play an important role in geoeffects and particle acceleration. They form due to the currents driven by demagnetized foreshock ions around a tangential discontinuity (TD). To understand the profile of such currents around a TD with foreshock ions on both sides, we use 2.5‐D local hybrid simulations of TDs, interacting with a planar shock with various shock geometries. We find that the electric field direction relative to the TD plane provides information about how the foreshock ion‐driven currents affect the magnetic field around the TD. For TDs embedded in the quasi‐parallel shock on both sides, the foreshock ions from one side of TD can cross it determining the current profile on the other side. In contrast, for TDs embedded in the quasi‐perpendicular shock, sheath‐leaked ions enter the TD and determine the current profile. We find that the foreshock ultra‐low frequency waves can periodically modulate how foreshock ions interact with the TD and thus the current profile. Studying the effects of various magnetic field configurations allows us to build a more comprehensive model of hot flow anomalie formation. 
    more » « less
  7. Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐driven acceleration of 100–300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  8. Abstract Ultra‐low frequency (ULF) waves radially diffuse hundreds‐keV to few‐MeV electrons in the magnetosphere, as the range of drift frequencies of such electrons overlaps with the wave frequencies, leading to resonant interactions. Theoretically this process is described by analytic expressions of the resonant interactions between electrons and ULF wave modes in a background magnetic field. However, most expressions of the radial diffusion rates are derived for equatorially mirroring electrons and are based on estimates of the power of ULF waves that are obtained either from spacecraft close to the equatorial plane or from the ground but mapped to the equatorial plane. Based on recent statistical in situ observations, it was found that the wave power of magnetic fluctuations is significantly enhanced away from the magnetic equator. In this study, the distribution of the wave amplitudes as a function of magnetic latitude is compared against models simulating the natural modes of oscillation of magnetospheric field lines, with which they are found to be consistent. Energetic electrons are subsequently traced in 3D model fields that include a latitudinal dependence that is similar to measurements and to the natural modes of oscillation. Particle tracing simulations show a significant dependence of the radial transport of relativistic electrons on pitch angle, with off‐equatorial electrons experiencing considerably higher radial transport, as they interact with ULF wave fluctuations of higher amplitude than equatorial electrons. These findings point to the need for incorporating pitch‐angle‐dependent radial diffusion coefficients in global radiation belt models. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  9. Abstract We statistically evaluate the global distribution and energy spectrum of electron precipitation at low‐Earth‐orbit, using unprecedented pitch‐angle and energy resolved data from the Electron Losses and Fields INvestigation CubeSats. Our statistical results indicate that during active conditions, the ∼63 keV electron precipitation ratio peaks atL > 6 at midnight, whereas the spatial distribution of precipitating energy flux peaks between the dawn and noon sectors. ∼1 MeV electron precipitation ratio peaks near midnight atL > ∼6 but is enhanced near dusk during active times. The energy spectrum of the precipitation ratio shows reversal points indicating energy dispersion as a function ofLshell in both the slot region and atL > ∼6, consistent with hiss‐driven precipitation and current sheet scattering, respectively. Our findings provide accurate quantification of electron precipitation at various energies in a broad region of the Earth's magnetosphere, which is critical for magnetosphere‐ionosphere coupling. 
    more » « less
  10. Ion-scale magnetic holes are nonlinear plasma structures commonly observed in the solar wind and Earth's magnetosphere. These holes are characterized by the magnetic field depletion filled by hot, transversely anisotropic ions and electrons and are likely formed during the nonlinear stage of ion mirror instability. Due to the plasma thermal anisotropy within magnetic holes, they serve as a host of electromagnetic ion cyclotron waves, whistler-mode waves, and electron cyclotron harmonic waves. This makes magnetic holes an important element of the Earth's inner magnetosphere, where electromagnetic waves generated within may strongly contribute to energetic ion and electron scattering. Such scattering, however, will modify the hot-ion distribution that is trapped within magnetic holes and responsible for the magnetic field stress balance. Therefore, hot ion scattering within magnetic holes likely determines the hole lifetime. In this study, we investigate how ion scattering by electromagnetic waves affects the stress balance and lifetime of magnetic holes. For illustration, we used typical characteristics of magnetic holes, ion populations, and ion cyclotron waves observed in the Earth's magnetosphere. We have demonstrated that ion distribution isotropization via scattering by waves does not change significantly magnetic hole magnitude, but ion losses due to scattering into the atmosphere may limit the hole life-times to 10–30 min in the Earth's inner magnetosphere. 
    more » « less